

# Design Consideration on Broad-Band *W*-Type Two-Mode Optical Fibers

YASUYUKI KATO, KEN-ICHI KITAYAMA, MEMBER, IEEE, AND SIIIGEYUKI SEIKAI

**Abstract**—Structural design for broad-band *W*-type two-mode optical fibers is investigated. The optimum parameters are numerically determined as follows: the operating *V*-value with zero group delay time difference  $\Delta\tau$  between the  $LP_{01}$  and  $LP_{11}$  modes is 6.7, the ratio of core radius to inner cladding radius is 0.6, and the index profile parameter is 2.02. Then, the core radius is 12.3  $\mu\text{m}$  for  $\Delta=0.3$  percent at the operating wavelength of 1.3  $\mu\text{m}$ . The *V*-value deviation tolerance from the optimum to maintain  $\Delta\tau$  less than  $\pm 20$  ps/km is 21 percent, which is 20 times larger than that of the earlier design made on two-layer index profile.

## I. INTRODUCTION

IT IS certified from the theoretical and experimental studies [1]–[3] that the two-mode optical fiber provides a large transmission capacity and feasibility of low splice loss. Design principle of the two-mode fiber is that the *V*-value where the group delay times of the two guided modes,  $LP_{01}$  and  $LP_{11}$  modes, coincide is chosen as the operating *V*-value  $V_0$ , and that group delay time difference  $\Delta\tau$  between  $LP_{01}$  and  $LP_{11}$  modes caused by the *V*-value deviation from  $V_0$  is made as small as possible. Here,  $\Delta\tau$  is defined by

$$\Delta\tau = \tau(LP_{11}) - \tau(LP_{01})$$

where  $\tau(LP_{11})$  and  $\tau(LP_{01})$  denote the group delay times of  $LP_{11}$  and  $LP_{01}$  modes, respectively. For the practical use of the two-mode fibers, therefore, it is important to know how to obtain a large tolerance in *V*-value deviation for maintaining  $\Delta\tau$  small over a wide *V*-value region. In the preceding papers [1], [2], designs were made on a two-mode fiber with the two-layer index profile consisting of core and cladding. In this type of index profile,  $V_0$  and the optimum index profile parameter  $\alpha_{\text{opt}}$  have been determined 6.45 and 2.24, respectively, [4] and the tolerance of operating *V*-value deviation is found to be 11 percent for  $\Delta\tau$  less than  $\pm 100$  ps/km.

In order to provide larger tolerance of operating *V*-value deviation, further design consideration is newly made on various index profiles, so-called *W*-type profiles, composed of three layers; core, inner cladding, and outer cladding. This investigation clarifies extremely larger extension of

the small  $\Delta\tau$  region in comparison with that calculated for the two-layer type index profile. For convenience of practical use, the optimum fiber parameters are determined for the *W*-type two-mode fiber from the view point of attaining large deviation tolerances for *V*-value and  $\alpha$ .

## II. $\Delta\tau$ CHARACTERISTICS FOR *W*-TYPE TWO-MODE FIBER

Let us consider *W*-type graded-index fibers consisting of core, inner cladding, and outer cladding. The index profile is expressed by

$$n(r) = \begin{cases} n_1 [1 - 2\Delta\rho(r/a)^\alpha]^{1/2}, & 0 \leq r \leq a \\ n_1 [1 - 2\Delta\rho]^{1/2}, & a \leq r \leq b \\ n_1 [1 - 2\Delta]^{1/2} = n_2, & r > b \end{cases} \quad (1)$$

where  $k$  denotes the wavenumber in vacuum. The parameters chosen are as follows: (a)  $\alpha=3.08$ ,  $\rho=1$ ,  $a=b$ ; (b)  $\alpha=2.04$ ,  $\rho=2$ ,  $a=b$ ; (c)  $\alpha=2.01$ ,  $\rho=2$ ,  $a/b=0.8$ . Calculations are made by numerically solving the vector-wave equation with the matrix method [5]. For simplicity,  $\Delta$  is chosen 0.3 percent in calculations throughout the paper. Cutoff *V*-value  $V_{c2}$  of the  $LP_{21}$  mode for each index profile is also shown in Fig. 2. In case (a), the operating *V*-value

$$V = kan_1\sqrt{2\Delta} \quad (2)$$

where  $k$  denotes the wavenumber in vacuum. The parameters chosen are as follows: (a)  $\alpha=3.08$ ,  $\rho=1$ ,  $a=b$ ; (b)  $\alpha=2.04$ ,  $\rho=2$ ,  $a=b$ ; (c)  $\alpha=2.01$ ,  $\rho=2$ ,  $a/b=0.8$ . Calculations are made by numerically solving the vector-wave equation with the matrix method [5]. For simplicity,  $\Delta$  is chosen 0.3 percent in calculations throughout the paper. Cutoff *V*-value  $V_{c2}$  of the  $LP_{21}$  mode for each index profile is also shown in Fig. 2. In case (a), the operating *V*-value  $V_0$  where  $\Delta\tau=0$  coincides with  $V_{c2}$  for  $\alpha=3.08$  [2]. While, as seen from the results for  $\rho=2$  given by the curves (b) and (c),  $V_0$  is smaller than  $V_{c2}$ . Therefore, it is found that the two-mode *V*-value region is expanded for  $\rho>1$  in comparison with that for  $\rho=1$ . Furthermore, comparing curves (b) and (c) where  $\rho=2$ , small  $\Delta\tau$  characteristics over a wide *V*-value range around  $V_0$  is obtained for  $a/b=0.8$ . As is evident from the curve (b), *V*-value tolerance is enlarged to about 10 times the case with  $\rho=1$  and  $a=b$ . Furthermore, the curve (c) shows that *V*-value toler-

Manuscript received May 19, 1981; revised July 30, 1981.

The authors are with Ibaraki Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corp., Tokai, Ibaraki-ken, 319-11, Japan.

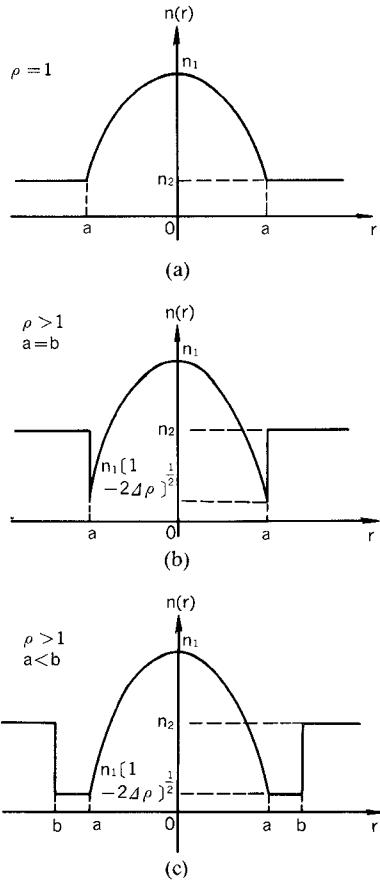



Fig. 1. Three types of index profiles. (a) Two-layer index profile. (b)  $W$ -type index profile with  $\rho > 1$  and  $a = b$ . (c)  $W$ -type index profile with  $\rho > 1$  and  $a < b$ .

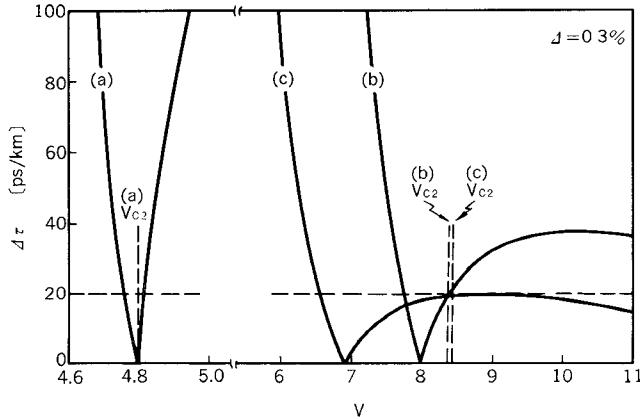



Fig. 2.  $V$ -value dependence of group delay time difference  $\Delta\tau$  between  $LP_{01}$  and  $LP_{11}$  modes, for: (a)  $\alpha = 3.08$ ,  $\rho = 1$ ,  $a = b$ ; (b)  $\alpha = 2.04$ ,  $\rho = 2$ ,  $a = b$ ; and (c)  $\alpha = 2.01$ ,  $\rho = 2$ ,  $a/b = 0.8$ .  $V_{c2}$  denotes the cutoff  $V$ -value of the  $LP_{21}$  mode. Refractive index difference  $\Delta$  is chosen 0.3 percent.

ance is exceedingly extended, compared with the other two index profiles.

### III. PARAMETER TOLERANCE FOR MAINTAINING SMALL $\Delta\tau$ CHARACTERISTICS

Design considerations to optimize the fiber parameters are made on  $W$ -type two-mode fiber. In this section, tolerance of operating  $V$ -value region is numerically evaluated.

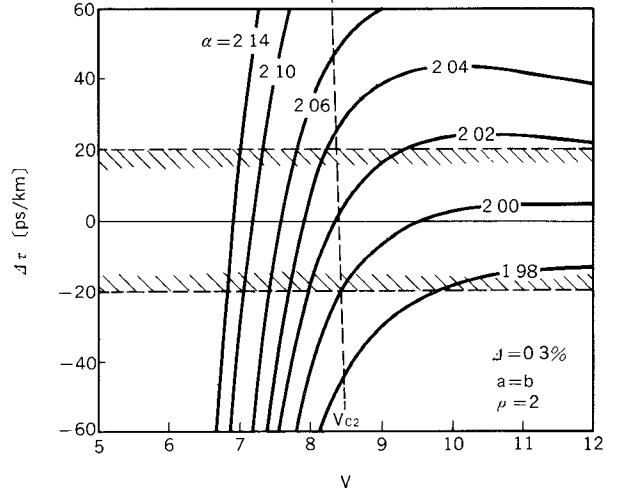



Fig. 3. Relation between  $\Delta\tau$  and  $V$ -value for various values of  $\alpha$  where  $a = b$ .

It is assumed that the allowable limit of  $|\Delta\tau|$  is 20 ps/km, which corresponds approximately to 45 GHz·km in baseband 3-dB bandwidth [4]. Furthermore, operating  $V$ -value region is considered to be restricted below  $V_{c2}$ . Then the tolerance  $B_v$  is defined as

$$B_v = \begin{cases} 2(V_1 - V_2)/(V_1 + V_2), & V_{c2} > V_1 \\ 2(V_{c2} - V_2)/(V_{c2} + V_2), & V_1 > V_{c2} > V_2 \\ 0, & V_2 > V_{c2} \end{cases} \quad (3)$$

for three possible cases, where  $V_1$  and  $V_2$  are  $V$ -values giving  $\Delta\tau = 20$  ps/km and  $-20$  ps/km, respectively. Note that  $V_1$  is always larger than  $V_2$ .

#### A. Index Profile with $\rho > 1$ and $a = b$

Fig. 3 shows the relation between  $\Delta\tau$  and  $V$  for various values of  $\alpha$  where  $\rho = 2$ . The shaded area denotes the  $V$ -value region where  $|\Delta\tau|$  is less than 20 ps/km.  $V_{c2}$  is indicated by the almost vertical dashed line. It is seen from Fig. 3 that there exists the two-mode propagation region ( $V < V_{c2}$ ) with  $|\Delta\tau| < 20$  ps/km for  $\alpha > 2$ , while for  $\alpha \leq 2$  no two-mode propagation region with  $|\Delta\tau| < 20$  ps/km exists. For an index profile having the inner cladding with the refractive-index lower than that of the outer cladding, guided mode power is still confined to some degree in a core region at its cutoff  $V$ -value [6]. Thus the  $LP_{21}$  mode can propagate with relatively low loss near  $V_{c2}$ , compared with the case of  $\rho = 1$ . Therefore, it is considered appropriate at present that  $V_0$  is chosen below  $V_{c2}$  for  $\rho > 1$ , in contrast with the case of  $\rho = 1$  where the operating  $V$ -value region was extended to  $V_0 > V_{c2}$  [4]. In Fig. 4, the operating  $V$ -value tolerance  $B_v$  defined by (3) is plotted against  $\alpha$  for various values of  $\rho$ . It is found that as  $\rho$  increases value of the maximum  $B_v$  becomes large, accompanied with the decrease in the value of  $\alpha$  giving the maximum  $B_v$ . It is noted that  $B_v$  larger than 0.2 is achieved for  $\rho = 2.5$  with  $\alpha \approx 2$ . This value is 20 times larger than that obtained by the previous design with  $\rho = 1$  and  $\alpha = 3.08$  [2]. As shown by the dotted line in Fig. 4, value of 0.5 is

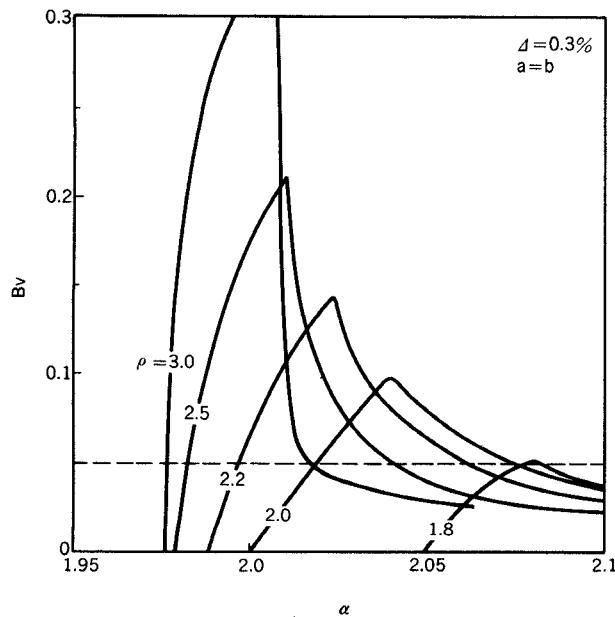



Fig. 4. The operating  $V$ -value tolerance against  $\alpha$  for various values of  $\alpha$  where  $a = b$ .

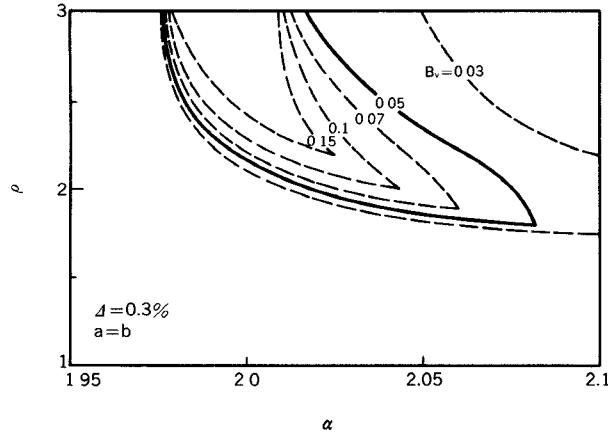



Fig. 5. Combinations of  $\rho$  and  $\alpha$  for various values of  $B_v$  where  $a = b$ .

introduced for the lower limit of the tolerable  $B_v$ . Combinations of  $\rho$  and  $\alpha$  for various values of  $B_v$  are plotted in Fig. 5. It is found from this figure that  $\rho > 1.8$  and  $1.97 < \alpha < 2.08$  are required for satisfying  $B_v > 0.05$  (the region surrounded by the solid curve).

#### B. Index Profile with $\rho > 1$ and $a < b$

Fig. 6 shows the numerical  $\Delta\tau$  against  $V$  for various values of  $\alpha$ , where  $\rho$  and  $a/b$  are assumed 2 and 0.8, respectively. It is found that for  $\alpha$  smaller than 2 two-mode propagation  $V$ -value region with  $|\Delta\tau| < 20$  ps/km still exists due to the presence of inner cladding ( $a/b = 0.8$ ). As a result, remarkable increase in  $B_v$  is observed as shown in Fig. 7. For example, for  $\rho = 2$  the maximum  $B_v$  is 0.25, which is 2.5 times larger than that with  $a = b$ . Fig. 8 shows the combinations of  $\rho$  and  $\alpha$  for  $B_v = 0.05$  with  $a/b$  as a parameter. Within the contours, the condition  $B_v > 0.05$  is satisfied. It is found that as lowering  $a/b$ , the minimum tolerable  $\rho$  for giving  $|\Delta\tau|$  less than 20 ps/km slightly decreases. The values of  $\rho$  are 1.48, 1.35, 1.28 for  $a/b = 0.8$ ,

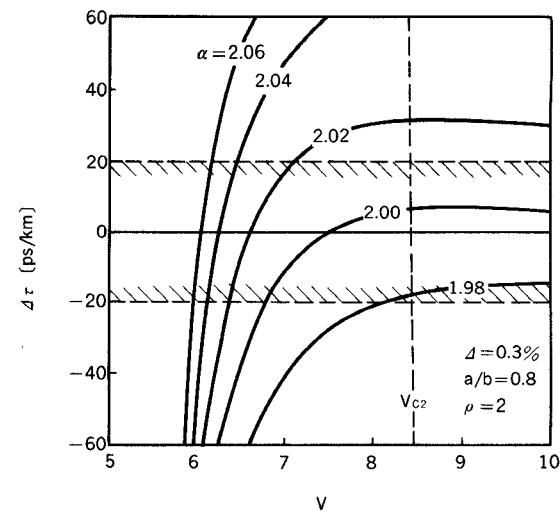



Fig. 6. Relation between  $\Delta\tau$  and  $V$ -value for various values of  $\alpha$  where  $a/b = 0.8$ .

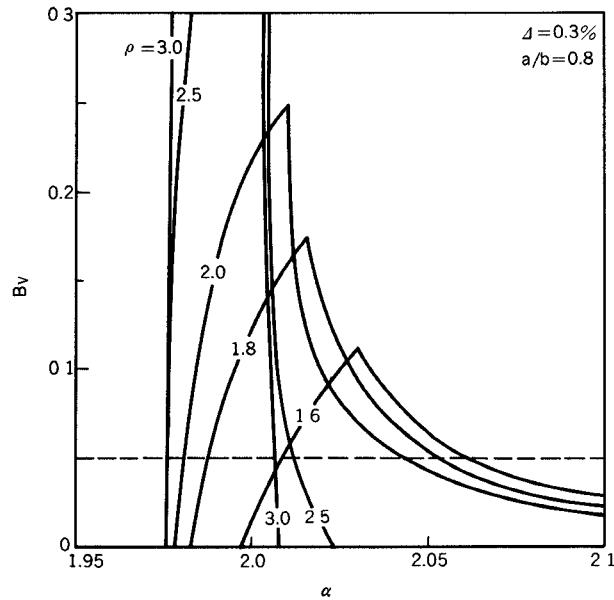



Fig. 7. The operating  $V$ -value tolerance against  $\alpha$  for various values of  $\rho$  where  $a/b = 0.8$ .

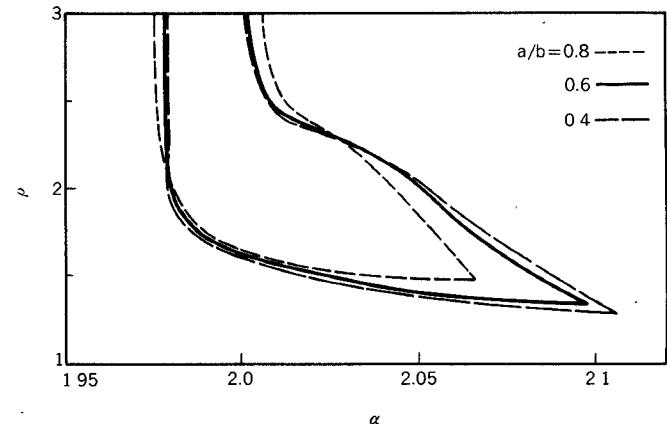



Fig. 8. Combinations of  $\rho$  and  $\alpha$  for various values of  $a/b$  where  $B_v = 0.05$  and  $\Delta = 0.3$  percent.

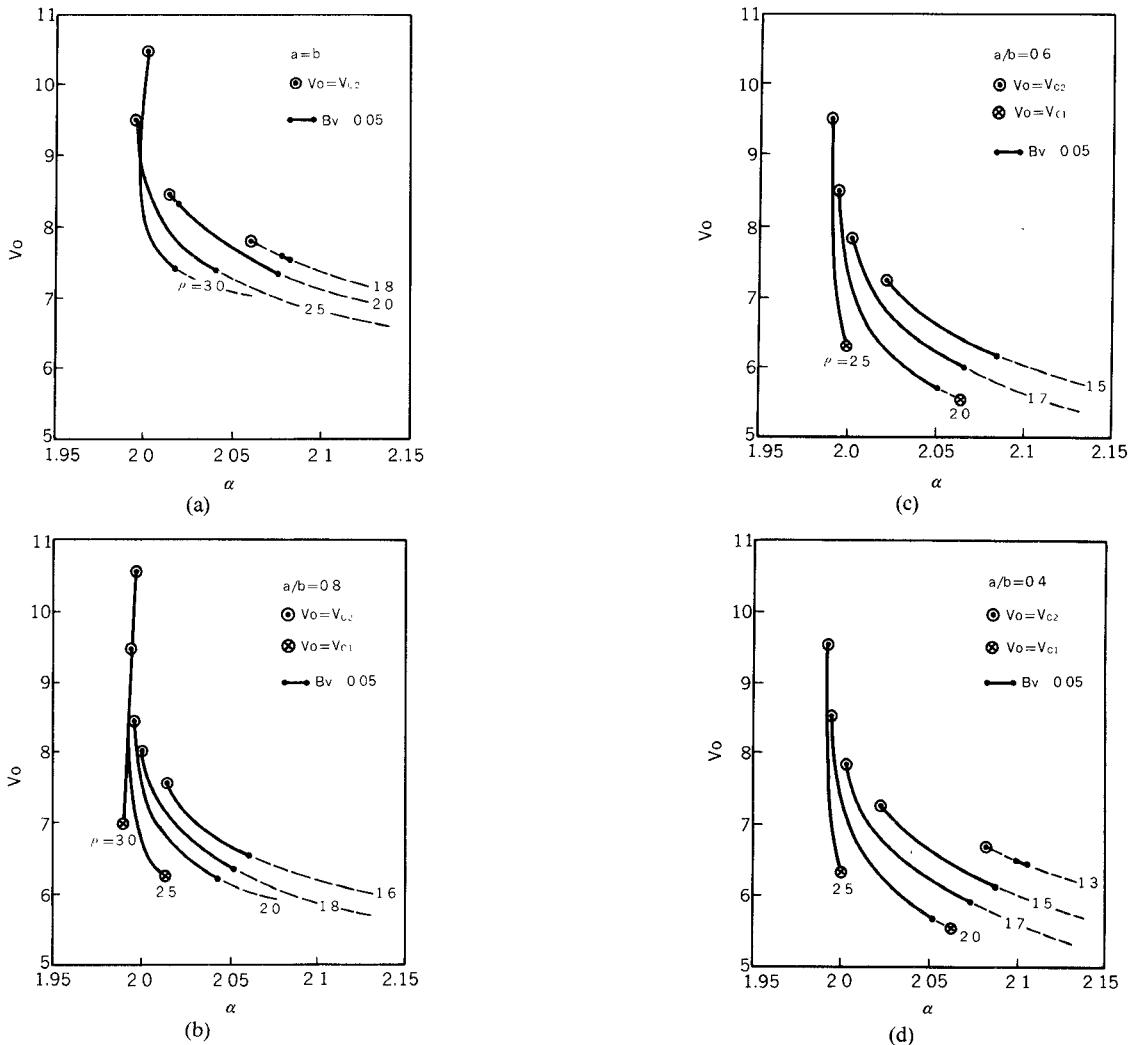



Fig. 9. Dependence of the optimum operating  $V$ -value  $V_0$  where  $\Delta\tau=0$  on  $\alpha$  for various values of  $\rho$ .

0.6, and 0.4, respectively, while  $\rho > 1.8$  in the case of  $a = b$  (Fig. 5).

#### IV. DETERMINATION OF THE OPTIMUM PARAMETERS

It is practically required in view of fabrication ease that the two-mode fiber provides a large  $\alpha$  deviation tolerance as well as the large  $B_v$ . For the convenience of design, the optimum operating  $V$ -value  $V_0$  where  $\Delta\tau=0$  is shown as functions of  $\alpha$  and  $\rho$  in Fig. 9 (a)–(d) for various values of  $a/b$ . The solid curves indicate the useful combinations of  $\alpha$  and  $\rho$ , satisfying the conditions  $V_0 \leq V_{c2}$  and  $B_v \geq 0.05$ , and the dotted curves denote the region where  $B_v < 0.05$ . As seen from the figures,  $V_0$  tends to change rapidly against  $\alpha$  for large  $\rho$ . This feature is unpreferable to obtain a large tolerance in  $\alpha$  deviation, and suggests that the optimum  $\rho$  is less than 2.5. Fig. 10 shows tolerable  $\alpha$  deviation  $\Delta\alpha (= \alpha_{\max} - \alpha_{\min})$  to maintain  $B_v$  larger than 0.05. The optimum  $\rho$  for the maximum  $\Delta\alpha$  is determined around 2 for each value of  $a/b$ , as listed in Table I. Using the values, the optimum  $\alpha$  and  $V_0$  are calculated. The results are summarized in Table I. The value of  $B_v$  against  $\rho_{\text{opt}}$  has the maximum for  $a/b=0.6$ , and decreases for smaller  $a/b$ .

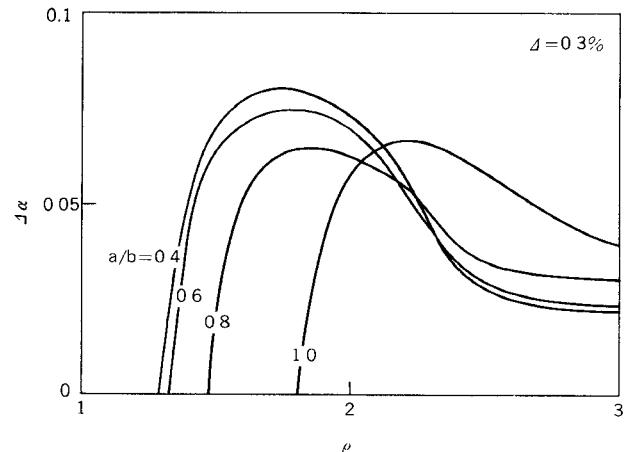



Fig. 10. The tolerable  $\alpha$  deviation  $\Delta\alpha$  as a function of  $\rho$ , to maintain  $B_v$  larger than 0.5.

Furthermore, for small  $a/b$ , the inner cladding radius becomes large, for instance  $b=30 \mu\text{m}$  for  $a/b=0.4$  at 1.3  $\mu\text{m}$ . Such a large  $b$  is not advantageous from the viewpoint of fiber fabrication economy. It is considered from the above discussion that the optimum value of  $a/b$  is chosen

TABLE I  
THE OPTIMUM  $\alpha$  AND  $V_0$  DETERMINED USING THE OPTIMUM  $\rho$  FOR  
VARIOUS VALUES OF  $a/b$

| $a/b$ | $\rho_{\text{opt}}$ | $\alpha_{\text{opt}}$ | $V_{\text{opt}}$ | $B_v$ | $a^*(\mu\text{m})$ | $b^*(\mu\text{m})$ |
|-------|---------------------|-----------------------|------------------|-------|--------------------|--------------------|
| 1     | 2.2                 | 2.02                  | 8.1              | 0.14  | 14.8               | -                  |
| 0.8   | 1.8                 | 2.02                  | 7.0              | 0.18  | 12.8               | 16.0               |
| 0.6   | 1.8                 | 2.02                  | 6.7              | 0.21  | 12.3               | 20.5               |
| 0.4   | 1.7                 | 2.02                  | 6.6              | 0.17  | 12.1               | 30.2               |

\* For  $\lambda = 1.3\mu\text{m}$  and  $\Delta = 0.3\%$

as 0.6. Then, core radius  $a$  and inner cladding radius  $b$  are  $12.3\mu\text{m}$  and  $20.5\mu\text{m}$ , respectively, for  $\lambda = 1.3\mu\text{m}$  and  $\Delta = 0.3$  percent. If both  $\alpha$  and  $V_0$  are set optimum at the wavelength of  $1.3\mu\text{m}$ , tolerable range of wavelength with  $|\Delta\tau| < 20\text{ ps/km}$  extends from  $1.18\mu\text{m}$  to  $1.45\mu\text{m}$  for  $\rho = 1.8$  and  $a/b = 0.6$ . While, the permissible variation in  $\alpha$  ( $\Delta\alpha_{\text{opt}}/\alpha_{\text{opt}}$ ) is 4 percent when the other parameters are fixed at their optimum values.

## V. CONCLUSION

New design of two-mode optical fiber has been presented for *W*-type fibers having wide tolerances of  $V$ -value and  $\alpha$  with group delay time difference between the  $LP_{01}$  and  $LP_{11}$  modes less than  $\pm 20\text{ ps/km}$ . The optimum values of  $\rho$  are found to change with the variation of inner cladding thickness. While it is interesting that the optimum  $\alpha$  is fixed at 2.02 regardless the inner cladding thickness. As a result of the theoretical investigation, along with the consideration on the fiber fabrication ease, the optimum parameters of the *W*-type two-mode fiber has been determined as  $a/b = 0.6$ ,  $\rho = 1.8$ ,  $\alpha = 2.02$ , and  $V = 6.7$ . Then, core radius and inner cladding radius are  $12.3\mu\text{m}$  and  $20.5\mu\text{m}$ , respectively, at the wavelength of  $1.3\mu\text{m}$ . In the present paper, discussion is restricted to the case where the optimum operating  $V$ -value  $V_0$  is chosen within a theoretical two-mode region. However, the previous design consideration for the two-layer index profile [4] has shown that the operating  $V$ -value is extended up to the effective cutoff  $V$ -value [7] of the  $LP_{21}$  mode. The same idea may be applied to further extension of the optimum operating  $V$ -value for the present *W*-type index profile. If the structural parameters are determined using the idea, this will result in the improvements of  $B_v$  and  $\alpha$  deviation tolerance. This future problem will be appropriately solved on the basis of the experimentally confirmed effective cutoff  $V$ -value of the  $LP_{21}$  mode for the *W*-type index profile.

## ACKNOWLEDGMENT

The authors wish to express their sincere thanks to N. Uchida for his constructive suggestions and critical comments. They are also grateful to H. Fukutomi and Y. Kato for encouragement.

## REFERENCES

- [1] J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, and T. Kimura, "Design considerations of broadband dual mode optical fibers," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 658-665, 1978.
- [2] K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Akiyama, and O. Fukuda, "Transmission characteristic measurement of two-mode optical fiber with a nearly optimum index-profile," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-28, pp. 604-608, 1980.
- [3] L. G. Cohen, W. G. French, and C. Lin, "Propagation characteristics of double-mode fibers," in *Proc. Topical Meeting Optical Fiber Communications*, (Washington, DC), 1979, pp. 98-100; also, *Bell Syst. Tech. J.*, vol. 59, pp. 1061-1072, 1980.
- [4] K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, "Structural optimization for two-mode fiber: theory and experiment," *IEEE J. Quantum Electron.*, vol. QE-17, pp. 1057-1063, 1981.
- [5] T. Tanaka and Y. Suematsu, "An exact analysis of cylindrical fiber with index distribution by matrix method and its application to focusing fiber," *Trans. IECEJ*, vol. E59, pp. 1-8, 1976.
- [6] S. Kawakami, *Optical Waveguides*. Asakura Publishing Company Ltd., 1980, ch. 6.
- [7] Y. Kato, K. Kitayama, S. Seikai, and N. Uchida, "Effective cutoff wavelength of the  $LP_{11}$  mode in single-mode fiber cables," *IEEE J. Quantum Electron.*, vol. QE-17, pp. 35-39, Jan. 1981.

**Yasuyuki Kato** was born in Yamagata Prefecture, Japan, on July 20, 1954. He received the B. S. degree in electrical engineering from the University of Yamagata, Japan, in 1977.

In 1977 he joined the Ibaraki Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Tokai, Ibaraki, Japan. His current interests are in the transmission characteristics of low-order mode optical fiber cables and single-mode fiber splice.

**Ken-ichi Kitayama** (S'75-M'76) was born in Kobe, Japan, on October 28, 1950. He received the B. E. and M. E. degrees in communication engineering from Osaka University, Osaka, Japan, in 1974 and 1976, respectively.

In 1976 he joined the Ibaraki Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Ibaraki, Japan, where he has been engaged in research work on transmission characteristics for designing optical fiber cables. His current interests include graded-index fiber and single-mode and two-mode fibers.

Mr. Kitayama received the 1980 Young Engineer Award from the Institute of Electronics and Communication Engineers of Japan. He is a member of the Institute of Electronics and Communication Engineers of Japan.

**Shigeyuki Seikai** was born in Nara, Japan, on September 19, 1945. He received the B. Eng., M. Eng., and Ph.D. degrees, in communication engineering, from Osaka University, Osaka, Japan, in 1969, 1971, and 1974, respectively.

After he joined the Ibaraki Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Tokai, Ibaraki, Japan, in 1974, he has been engaged in developmental research on millimeter-waveguides and optical transmission lines. His research interests include transmission characteristics of optical fibers, design of optical fiber cables, and optical fiber splicing.

Dr. Seikai is a member of the Institute of Electronics and Communication Engineering of Japan.